Az oldal sütiket használ a felhasználói élmény fokozása céljából. Az oldal böngészésével elfogadja ezt. Értem Részletek
Kapcsolat: +36-53-571-114 |


Ár: 70.334 Ft+Áfa (Br. 89.324 Ft)
Rövid leírás:

Az ODROID-H4 család tagjai meglepő teljesítménnyel, energiahatékonysággal és kompatibilitással rendelkező, x86 64 bites egylapos mini számítógépek (SBC) AVX2 kiterjesztéssel és fejlett IO portokkal. Komoly előrelépés az előző generációhoz képest a CPU-k teljesítmény növekedése, a DDR5-4800 memória sávszélessége, a +1 kijelző (1 HDMI+ 2 DisplayPort) támogatása. A Plus és Ultra verziókon 4 db SATA és 2db 2.5GbE (ethernet) port található. Tökéletes alapot biztosít NAS vagy komolyabb router építéséhez. Ha kevés az ethernet porok száma mindegyik típus bővíthető 4 portos 2.5GbE kártyával.


The ODROID H-series is growing with three brand new models.

Again, the new generation is more powerful and offers higher performance. 
It also delivers key new IO that will please many users.


Introducing the ODROID-H4, H4+ and H4 Ultra

Hardkernel is introducing the ODROID-H4, H4+ and H4 Ultra, which is equipped with higher performance and richer interfaces.




The major characteristics of the ODROID-H4 series compared to the ODROID-H3 series are:


  1. Faster CPU architecture Alder Lake N vs. Jasper Lake. Plus AVX2 extensions.
  2. Faster DRAM interface DDR5 4800 MT/s vs. DDR4 2933 MT/s.
  3. Higher base and boost CPU frequencies and more powerful iGPU.
  4. The increase from 2 to 4 SATA ports allows connection to a greater number of storage devices, ODROID-H4+ and ODROID H4 Ultra only.
  5. An additional DisplayPort added allows the simultaneous use of up to 3 monitors.
  6. Low cost ODROID H4 for compute and graphics applications (e.g signage, robot, factory automation,..)
  7. Flagship H4 Ultra doubling the number of CPU cores, from 4 to 8 cores.


We also implemented little details following the ODROID-H3 feedback we receive from all of our users, this means you. Examples: 


  1. Dual BIOS: If the BIOS is corrupted due to a power outage during update, etc., you can boot into the backup BIOS and recover by moving the jumper next to the DC jack. This feature is only available on ODROID-H4+ and ODROID H4-Ultra.
  2. The new H4 cases format has been improved so that a cooling fan can be mounted inside the case.
  3. Mini-ITX kit for seamless integration with generic ITX PC cases.


Let’s look at the detailed table shown below.




(‘2020 Jun)



(‘2022 Oct)



(‘2022 Oct)



(‘2024 Apr)



(‘2024 Apr)


H4 Ultra  

(‘2024 Apr)

CPU (Intel) Celeron J4115 Celeron N5105 Pentium N6005 Processor N97 Processor N97 Core™ i3 Processor N305
Code name Gemini Lake Jasper Lake Jasper Lake Alder Lake-N Alder Lake-N Alder Lake-N
Launch date Q4’17 Q1’21 Q1’21 Q1’23 Q1’23 Q1’23
Microarchitecture Goldmont Plus Tremont Tremont Gracemont Gracemont Gracemont
Cores / Threads 4C4T 4C4T 4C4T 4C4T 4C4T 8C8T
Cache 4 MB 4 MB 4 MB 6 MB 6 MB 6 MB
AVX2 (Advanced Vector Extensions) No No No Yes Yes Yes
TDP 10W 10W 10W 12W 12W 15W
Single Thread Burst Frequency (GHz) 2.5 2.9  3.3 3.6 3.6 3.8
Max. Memory address space (GB) 32 64 64  48 48 48
Max. Memory Speed (MT/s) DDR4-2400 DDR4-2933 DDR4-2933 DDR5-4800 DDR5-4800 DDR5-4800
iGPU (Intel UHD Graphics)            
Burst Frequency (MHz) 750 800 900 1200 1200 1250
Execution Units 12 24 32 24 24 32
Video outputs            
HDMI 1 1 1 1 1 1
DisplayPort 1 1 1 2 2 2
PCIe (via NVMe slot)            
Generation Gen 2 Gen 3 Gen 3 Gen 3 Gen 3 Gen 3
Lanes 4 4 4 4 4 4
Compatibility with optional 

4-ports 2.5GbE

Net Card

Yes Yes Yes Yes Yes Yes
IO ports            
USB 2.0 2 ports 2 ports 2 ports 2 ports 2 ports 2 ports
USB 3.0 2 ports 2 ports 2 ports 2 ports 2 ports 2 ports
2.5GbE 2 ports 2 ports 2 ports 1 port 2 ports 2 ports
SATA III 2 ports 2 ports 2 ports No 4 ports 4 ports
24pin IO Expansion ports I2C x 2 I2C x 2 I2C x 2 I2C x 2 I2C x 2 I2C x 2
  USB 2.0 x 1 USB 2.0 x 3 USB 2.0 x 3 USB 2.0 x 3 USB 2.0 x 3 USB 2.0 x 3
  UART x 2 UART x 1 UART x 1 UART x 1 UART x 1 UART x 1
  Ext. Power Button x 1 Ext. Power Button x 1 Ext. Power Button x 1 Ext. Power Button x 1 Ext. Power Button x 1 Ext. Power Button x 1
Optional Cooling Fan 92 mm 5 Volt

mini 4pin connector

92-25 mm 12 Volt

standard PC 4-pin

92-25 mm 12 Volt

standard PC 4-pin

Slim 92-15 or thick 92-25 mm 12 Volt

standard PC 4-pin

Slim fan fits inside the new cases.

Slim 92-15 or thick 92-25 mm 12 Volt

standard PC 4-pin

Slim fan fits inside the new cases.

Slim 92-15 or thick 92-25 mm 12 Volt

standard PC 4-pin

Slim fan fits inside the new cases.

Dimensions 110x110mm (4.3×4.3 in) 110x110mm (4.3×4.3 in) 110x110mm (4.3×4.3 in) 120x120mm (4.7×4.7 in) 120x120mm (4.7×4.7 in) 120x120mm (4.7×4.7 in)
Recommended Power Supply 1 60W 60W 60W 60W 60W 60W
Recommended Power Supply 2
for supporting booting
with 3.5″ hard disks
133W 133W 133W 133W 133W 133W
Unlimited Performance Mode No Yes Yes Yes Yes Yes
Security (TPM 2.0) Couldn’t be supported fTPM enabled

(Will run Windows 11 out of the box)

Hardkernel H-series cases DIY assembly

Translucent Blue Acrylic

DIY assembly

The cases are made of solid and sturdy PCBs.

DIY assembly

The cases are made of solid and sturdy PCBs.

A classic GameCube-style case will be released in May or June separately.

Pricing $119 $129 $165 $99 $139 $220



Noteworthy Features

Why the N97 instead of the N100?

Bigger numbers aren’t always better. INTEL naming may be deceiving.

We chose the N97 because its Maximum Turbo Frequency is 200MHz higher than the N100, respectively 3.60GHz vs. 3.40GHz.
In addition, the GPU Max Dynamic Frequency is a whopping 450MHz higher, respectively 1.2GHz vs. 750MHz.

The TDP value of the N97, which is therefore faster than the N100, is higher, but there is almost no difference in power consumption at idle state.

Although the N97 is more expensive, we chose it for its higher performance.


Single-Channel Memory

This is a decision made by Intel. The Alder Lake N processors only offer one single-channel of memory. However, the DDR5 speed of 4800 MT/s as well as the Dual Rank (r2x8) option largely compensate for the double-channel of DDR4 with the H2 and H3 series.
The DDR5 4800 MT/s of the H4 series leaves the DDR4 2933 MT/s and DDR4 2400 MT/s of the H3 and H2 series in its rear mirror.


Note: While the Intel ARK pages specify the Alder Lake N max. memory to be 16GB, we validated that 32 and 48 GB DDR5 SO-DIMMs 4800 or 5600 MT/s work as well. The 5600 MT/s will run at 4800 MT/s. The Intel specifications for the H2 and H3 processors were
limited as well, but many users were able to (respectfully) pump up the max. memory to 32 and 64 GB.


How many SATA ports and video outputs?

Compared to the previous generation Gemini Lake or Jasper Lake, the design flexibility of the new Alder Lake-N’s high-speed signal interface has been significantly reduced. To enable SATA ports inside the SoC, a choice arose: reducing the number of PCIe lanes
for NVMe from 4 to 2 or find another way. In order to avoid compromising the speed of NVMe, it was inevitable to add an
external, expensive SATA controller.

Thanks to a controller that supports four SATA ports, the requirement to connect many storage devices has been resolved.

As the performance of CPU, GPU, and DRAM increases, it has become possible to drive a large number of displays.
Therefore, in addition to the one output each for HDMI and DisplayPort in the existing H series, the new H4 series is equipped with an additional DisplayPort, allowing a total of three 4K monitors to be connected simultaneously.

Because there are more connectors with relatively large footprints, the form factor has changed from 110x110mm to 120x120mm,
and the area has increased by about 20%. As a result, form factor compatibility with the existing H2/H3 series has unfortunately
disappeared. However, this affects only the case compatibility. Accessories such as the Net Card work on H2, H3 and H4 series.


Which H4 model is the best for you?

To allow you to use a high-performance platform at a relatively low cost, we removed all SATA functions, the second Ethernet port,
and the Dual-BIOS feature to create a basic H4 model that focuses on cost-effectiveness. Therefore, it is suitable for application
to embedded systems such as digital signage or factory automation or robot control.

On the other hand, the H4+ is equipped with four SATA ports, a second Ethernet port, and Dual-BIOS feature, making it the best
choice for users who need mass storage for high-performance NAS and/or use it for routing capabilities.

Finally, although it is more expensive, we have also designed the H4 Ultra model, which can take advantage of powerful
performance with twice the number of CPU cores (from 4 to 8) and more GPU execution units. Thanks to its many cores
and fast clocks, the H4 Ultra model shows computing performance that can be twice as high as the H4 and H4+ models,
based on multithreaded computing benchmarking results.

If you are very sensitive to power consumption, the H4 model would be the most desirable option. This is because the
power in idle state is about 1 Watt lower than the H4+ model.



Thanks to the Intel Alder Lake-N Gracemont architecture, the higher frequencies of the N97, for the H4 and H4+, and N305, for the H4 Ultra, coupled with DDR5 4800 MT/s, the H4 and H4+ in UP mode are on average around 36% more performant than the H3+ in UP mode. The increased performance jumps to around 83% for the H4 Ultra, again compared to the H3+ in UP mode. This is what we witnessed while running 206 mostly non-synthetic benchmarks. We review these benchmarks further down.
We will also see that the increased performance climbs to even higher numbers for multi-threaded applications.



For the last 4 years, We acquired a lot of experience and feedback from users, meaning you, first with the H2 series, then with the
H3 series. We have seen and still see an incredible broad range of applications.

Some users pushed their ODROID to the max with as much memory as possible, disks, discrete graphics cards, additional
SATA ports cards or high-bandwidth network cards.

Conversely, other users made their ODROID as frugal as possible, chasing the last tenths of Watt that could be saved. In this matter,
see section Power Consumption Characteristics, we worked on many aspects to make significantly low idle power consumption
possible, as well as documenting and enabling users to know how to reach idle power that is not at all high compared to ARM series
boards. We believe this is essential, especially for European users where the cost of electrical energy has been rising for years,
to which you add the goal of reducing net greenhouse gas emissions, as targeted by the EU, while running 24×7 systems.

These two extremes, and everything in the middle, are possible because the H series boards can be widely customized. We believe the success of the ODROID H-series is in part due to its original DIY design goal with boards that do not restrict you to one kind of
application, e.g. TV box.

The ODROID H4 series doubles down on versatility by adding the low cost H4, with stripped down hardware, on one side of
the H4+, and the 8-core H4 Ultra flagship on the other side of the H4+.


The table shown below details the H4 series user-level customizations:

Design An SBC design that makes sense: all the connectivity is on the rear side, simplifying case design and reducing footprint on a desk.
H-series Net Card Using the NVMe port, provides 4 additional 2.5 GbE ports, thus tripling the number of 2.5 GbE ports to 6 ports.
Do It Yourself The ODROID H-series offers you a lot of freedom. You are free to chose:

1. The amount and brand of memory. No soldered memory.

2. The size of the eMMC (including not using one). No soldered eMMC.

3. The size of the NVMe PCIe Gen 3 x4 SSD, including not using one(*).

4. To transform the NVMe slot into a PCIe Gen 3 x4 slot for using PCIe cards via optional adapter cable(*).

5. The size of the 1 to 4 SATA III hard disks or SSDs, including not using them (H4+ and H4 Ultra only).

6. A case among 4 (soon to be 5) types of Hard Kernel cases or use a custom one you design or another user designed or use a mainstream Mini-ITX case thanks to the ODROID H4 Mini-ITX kit.

7. Hard Kernel cases allow the usage of an optional silent fan for optimal thermal performance.

8. Any x86-64 flavor of Windows, Linux or BSD operating systems, etc.

9. To upgrade the hardware later with larger memory, more NVMe or SSD or hard disk space.

10. To maximize performance or to minimize power consumption thanks to well documented BIOS and OS options.

(*) PCIe Gen 2 on the H2/H2+.



Comparing the H4, H4+, H4 Ultra to H3+

In order to evaluate the performance of the H4, H4+ and H4 Ultra and compare them to their predecessor, we elected to compare
them only to the H3+ and H3+ UP, the fastest of the previous H-series generations. 

As a reminder, you can retrieve the comparison of the H3 and H3+ vs. the H2+ there:

With the PDF version available there:


What is the meaning of UP? 

The acronym UP indicates that the CPU is running in “Unlimited Performance Mode”. This is a mode where the CPU can run in
Turbo Boost mode with no time limit, hence the name. The Unlimited Performance Mode is described in the next section.

As we are going to see, the Alder Lake N97 tops the Jasper Lake and the Alder Lake N305 is in a class of its own when compared to
the Jasper Lake and ADL N97, especially in UP mode.

We proceeded with real application benchmarks rather than synthetic ones. To do so we ran a battery of Phoronix testing suites.
These testing suites are listed below:

  • Compilation (subset)
  • Compression
  • Java (subset)
  • Python
  • Imaging
  • Audio Encoding
  • Databases
  • Unigine GPU
  • Cryptography
  • Video Encoding


The Phoronix Testing Suite is available there: As stated on its web site, we quote:
“The Phoronix Test Suite [is an OSS project that] makes the process of carrying out automated tests incredibly simple. The Phoronix Test Suite will take care of the entire test process from dependency management to test download/installation, execution,
and result aggregation.”

Note: We ran a subset of each testing suite in order to keep this document short for clarity purposes.

Let us examine the results we obtained with tables and charts showing the H3+ as base 100. Example: using the line Timed Apache Comp. in the Compilation Benchmark table shown below, the H3+ UP is 30.32% faster, the H4/H4+ 35%, the H4/H4+ UP 51.95%, the H4 Ultra 50.39% and finally the H4 Ultra UP 101.51% faster.

What is the meaning of UP?
The acronym UP indicates that the CPU is running in “Unlimited Performance Mode”. This is a mode where the CPU can run in
Turbo Boost mode with no time limit, hence the name. The Unlimited Performance Mode is described further down.


Unlimited Performance Mode

Starting with the Core 10th generation Intel introduced Power Limit 4 (PL4) and made it user configurable via the BIOS. What is it? PL4 is the SoC’s maximum power limit at the package level. No matter what the CPU is actually doing, it will not pass this limit.
The interesting side of the story is that as a user you can set it to 0, which means no limit.

Fortunately, Intel carried it with the Alder Lake-N processors.

The ODROID-H4, H4+ and H4 Ultra BIOS allows you to set this limit to 0. This is what we call Unlimited Performance mode.
The default value is 30,000 corresponding to the Balanced mode, meaning around a SoC’s maximum power limit of 12W
for the N97 of the ODROID H4 and H4+, and 15W for the N305 of the H4 Ultra.

Using the Unlimited Performance mode (annotated UP) with the ODROID-H4, H4+ and H4 Ultra enables the CPU to turbo boost
indefinitely: 2.9 GHz all cores and 3.6 GHz one core for the H4 and H4+ , 3.0 GHz all cores and 3.8 GHz one core for the H4 Ultra.

As you may expect the CPU will get hot quickly (in a matter of minutes) and get close to his T Junction (Tj) temperature which will
trigger its emergency shutdown as thermal protection. But the CPU will not reach Tj because it will automatically throttle down
when it is about 5 degrees Celsius away from Tj (we tested this multiple times). As soon as the CPU thermally throttles down
you start losing the increased performance you were aiming at while still consuming more power compared to the Balanced
mode. Not ideal.

In order to prevent thermal throttling when using the Unlimited Performance mode, the solution is simple:
active cooling with a fan.

We designed the H4, H4+ and H4 Ultra heat sink to make it very efficient:
(a) you do not need a fan in Balanced mode
(b) it has a high rate of thermal exchange when coupled with a fan.

Using a fan will decrease the maximal CPU temperature by about 25 to 30 degrees Celsius depending on factors such as the
ambient temperature. It it difficult for us to give you precise temperature values because what one witnesses depends on
many factors: as already mentioned the ambient temperature, the CPU BGA soldering thickness error, the heat sink assembly
tolerance, the type of thermal paste and quantity applied, the cooling fan speed RPM error margin (which can be as high as
5 to 10%). All of these factors can result in a 10+ degrees Celsius difference between one setting and another.

The important point is that with active cooling you get the increased performance you aim at while the CPU stays just comfortably
warm while turbo boosting indefinitely, way below temperatures close to Tj. In other words the fan active cooling brings
you the best of both worlds. This is what we witnessed and validated while performing many tests in different locations.

Last point: in Unlimited Performance mode, the CPU (and the fan) use more power than they do in Balanced mode, easily
reaching 23+ W with the ODROID-H4+ and 34+ W with the ODROID-H4 Ultra. However this happens only when the CPU is
indeed turbo boosting. When idle, the system will use the same power as in Balanced mode. If your goal is to minimize energy
consumption, use Balanced mode. If your goal is to maximize performance use Unlimited Performance mode and again use
active cooling with a fan to avoid the CPU to be constantly throttling down.

For learning how to change PL4 in the BIOS, as well as change the fan settings, please refer to the related Wiki page.


The official 92x15mm and 92x25mm 12V PWM cooling fans or similar 3rd party cooling fan should be mounted under the official cases venting holes. We have tested the following 3rd party cooling fan samples.
– Noctua NF-A19x14 PWM ( Thickness 14mm)
– Thermalright TL-9015 ( Thickness 15mm)

Unlike the previous H2 and H3 cases, the new H4 cases have been designed to allow the installation of the thin 92x15mm cooling fan inside the case. The H4 case types 1, 2 and 3 require the use of a 92x max 15mm thin fan if you want to place the fan inside the case. As the distance between the cooling fan and the heat sink is closer, we can expect a cooling effect that is not significantly different when using a thin fan.

On the other hand, the H4 case type 4 accepts both 92×15 and 25mm fans. The 92x25mm fan is recommended for the H4 case type 4. It provides higher flow and pressure than the 92x15mm fan. This allows for the air to circulate better inside the case, cooling both the CPU heat sink and the disk(s).

The ODROID-H4, H4+ and H4 Ultra use a PC standard 12V PWM 4-pin connector (see diagram shown below). Therefore, anyone can install a third-party cooling fan that can be easily purchased in the market.


Demo video

This demo video shows the PS2 and GameCube emulation games on Linux Vulkan GPU driver with Fractional-Scaling technology. We used Batocera.linux x86_64 version 39 for the emulation.

Thanks to the H4’s significantly improved CPU, GPU, and DRAM performance, we can enjoy SD-quality classic masterpiece games
in HD quality graphics now.  To play games with this level of graphics on the H3 board, we had to connect an external video card.


Triple-Head 4K Monitor Demo

We can connect three 4K/60Hz monitors to the H4 for both fun and productive work. Thanks to hardware virtualization, Linux and Windows can be operated at the same time. 


Picture 1 : Three different 4K Youtube videos playback flawlessly and simultaneously with Chrome browsers on Ubuntu desktop.


Picture 2 : Ultra wide WebGL Aquarium demo on Ubuntu Chromium browser.
The resolution is 11520 x 2160 approximately.



Picture 3 :The monitor on the left shows the Ubuntu Desktop host OS, the one on the middle shows Windows 11 running as a guest OS, the one on the right shows Debian 13 using the hardware virtualization VT-x technology.



Hardware Details

Board Description

  • A. CPU (Intel N97 or N305 )
  • B. 1 x DDR5 SO-DIMM slots (Single channel memory support)
  • C. 1 x M.2 PCI Express Module Socket (NGFF-2280)
  • D. 1 x eMMC (Embedded Multimedia-Card) Socket
  • E. 4 x SATA Power Connectors (2.5mm pitch, JST-XH compatible connector)
  • F. 4 x SATA3 6.0 Gb/s Data Connectors
  • G. 1 x DC Power Jack
  • H. 2 x USB 3.0
  • I. 2 x USB 2.0
  • J. 1 x HDMI 2.0
  • K. 2 x DisplayPort 1.2
  • L. 2 x RJ45 Ethernet Ports (10/100/1000/2500)
  • M. 5 x System LED Indicators
  • N. 1 x Peripheral Expansion Header (24-pin)
  • O. 1 x Power Switch
  • P. 1 x Reset Switch
  • Q. 1 x Backup Battery Connector (2-pin)
  • R. 1 x Active Cooling Fan Connector (4-pin)
  • S. 1 x Audio out, 1 x Audio in, 1 x SPDIF out



Block diagram


Processor Intel 4-Core N97 for ODROID-H4 and H4+

Intel 8-Core i3 N305 for ODROID-H4 Ultra

Memory 1 x DDR5 SO-DIMM slots

Single Channel, up to 4800 MT/s. Note: Dual rank r2x8 are better.

Max memory capacity 48GB

DDR3/DDR4 are not supported

Storage 1 x eMMC connector (bootable and selectable on BIOS)

Various eMMC modules can be purchased at Hardkernel store

4 x SATA3 6Gbps 

1 x M.2 slot (PCIe 3.0 x 4, supports NGFF-2280 cards)

Networking 2 x 2.5 GbE LAN ports (RJ45, supports 10/100/1000/2500 Mbps)

Intel I226-V

Supports Wake-On-Lan

LED indicators (Green: Link, Amber: Traffic)

Video 2 x DisplayPort 1.2 (up to 4K@60Hz)

1 x HDMI 2.0 (up to 4K@60Hz)

Triple simultaneous display support

Audio 1 x Audio out (3.5mm jack)

1 x Audio in (3.5mm jack)

1 x SPDIF out (ALC662, HDA codec)

* HDMI & DP have audio output too.

External I/O 2 x USB 3.0 Host ports

2 x USB 2.0 Host ports

1 x Peripheral Expansion Header (24-pin, 2.54mm pitch)

– 1 x DC 5V, 1 x DC 3.3V, 5 x GND

– 1 x UART (TXD/RXD/RTS/CTS 3.3Volt IO)

– 2 x I2C (SCL/SDA 3.3Volt IO)

– 1 x External Power Button

– HDMI CEC, 5VA+, D+,D- ( To use the HDMI-CEC function, an additional external adapter board must be installed )

– 3 x USB 2.0

Other features Passive Heatsink

Dual BIOS on H4+ and H4 Ultra

BIOS Backup Battery ( All H series models include a backup battery by default )

– Maintains system time and BIOS settings

Power Button

Reset Button

System LEDS Indicators:

– Red (PWR) – Solid light when DC power is supplied

– Blue (left, SLEEP) – turns off only when the system enters into suspend mode

– Blue (right, PMIC) – turns on only when the major power rails are working

– Amber (SATA) – Flashes when SATA data transfers

– Green (NVMe) – Flashes when NVMe data transfers

Active Cooling Fan Connector (12V 4-pin, PWM input + TACHO output)

– Active Cooling Fan is optional

– Connector (4-pin, 2.54mm pitch)

Power DC jack : outer (ground) diameter 5.5mm, inner(positive) diameter 2.1mm

DC 14V ~ 20V 

— DC 15V/4A power adapter is recommended if you don’t use 3.5″ HDDs

— DC 19V/7A power adapter is recommended if you use more than one 3.5″ SATA HDDs together

Power consumption:

— Headless Idle : 2.0 ~ 2.9 Watt

— Desktop GUI Idle : 4.6 ~ 6.2 Watt 

— CPU + GPU stress test : 19 ~ 22 Watt 

— Power-off :  0.2 Watt

— Suspend to RAM :  0.9 ~ 1.2 Watt

Form Factor 120mm x 120mm x 47mm Approx.



Power Consumption Characteristics

Power Consumption Characteristics with Desktop GUI

We used our SmartPower3 (see to test and measure the ODROID-H4 Ultra
power consumption while performing specific activities. We used an M.2 NVMe storage device, 4K HDMI monitor,
Ethernet cable and USB combo keyboard + mouse while measuring the power consumption.

Naturally, the power consumption of the high-performance H4 Ultra model is higher than the two other models.
The table shown below and its corresponding chart detail the power consumption we witnessed:

Activity Power Consumption in Watt
Ubuntu Desktop Booting 15.7
Gnome Desktop GUI Idle 6.2
CPU stress 20.5
4K YouTube play on Chrome Browser 15.4
WebGL aquarium demo on Chrome Browser 16.4
WebGL + CPU Stress 21.6
Power Off 0.2
Sleep (Suspend to RAM) 1.3



Idle Power Characteristics for Headless Server

If the idle period of the server you operate is relatively long, lowering the idle power to a minimum will save electricity bills and help improve the global environment. So, we have always made continuous efforts to improve the low power characteristics of the
H series.
Efficiency has always been a top priority when selecting numerous power conversion components in hardware design.
As a result, the new H4 model also achieves idle state power as low as 2 watts.
Since many users are very interested in idle power, we conducted more comprehensive in-depth tests for each model.

We started our testing by resetting all BIOS settings and then booting Ubuntu 22.04.4 based on Linux kernel 6.5. After confirming
that the CPU’s C10 (pc10) state occupancy rate was over 96%, we logged power data every second for more than 60 seconds
using SmartPower3, and the average value is written in the table below. Then, we disconnected the HDMI cable and measured it in the same way.
In that state, we rebooted, entered the BIOS menu, changed the PL4 value, changed it to Unlimited Performance mode, and tested again. We were able to confirm that the Unlimited Performance setting had near zero effect on idle power.
Next, we changed the PCIe ASPM (Active State Power Management) setting from the default ‘Disabled’ to ‘Auto’. A fairly dramatic
reduction in idle power is observed in this area. Now we can see numbers closer to 2 watts. The reason we chose “Disabled”
as the default BIOS ASPM setting is because we saw some NVMe/PCIe devices have been experiencing instability with ASPM
In addition, if you remove the Ethernet cable, the H4 model shows amazing idle state low power characteristics of 1.5Watt.
Of course, we know that in reality, it is unlikely to be used without an Ethernet cable unless there are special cases like standalone
robots or drones.

Anyway, it’s a blessing for all of us that anyone can build a very low idle power server that runs continuously 24/7, all year round.


    H4 H4+ H4 Ultra
Ubuntu Desktop GUI

(Power-Save Governor)

HDMI connected 4.6 W 6.1 W 6.2 W
HDMI disconnected 3.9 W 5.3 W 5.4 W
Unlimited Performance mode On (PL4=0) 3.9 W 5.3 W 5.4 W
Off (PL4=30000, Default) 3.9 W 5.2 W 5.3 W
PCIe ASPM option in BIOS settings All Disabled (Defaut) 3.9 W 5.2 W 5.3 W
All Auto 2.0 W 2.7 W 2.8 W
Ethernet connection Yes 2.0 W 2.7 W 2.8 W
No 1.5 W 2.4 W 2.4 W



  • The idle power of the H4+ and H4 Ultra models is almost identical, well below the margin of error.
  • Even when set to Unlimited Performance Mode (PL4=0), the power difference in idle state is negligible.
  • If you change the PCIe ASPM option to Auto, idle power can be reduced by about 1~2 Watt even in the Desktop GUI environment.
  • The difference in idle power between the H4 and H4+ models is approximately 0.7 to 1.5 Watt due to the external PCIe-to-SATA controller IC and the power circuitry for SATA devices.
  • Only one Ethernet cable is connected.
  • In this test, Ubuntu Desktop OS was used, and we think that power consumption could have been slightly reduced if Ubuntu Server OS had been used.


How (and Why) we made the H4, H4+ and H4 Ultra

Gracemont vs Tremont

Intel Alder Lake-N SoC is based on Gracemont Architecture, and compared to the previous generation Tremont Architecture,
the size of the internal cache memory is increased by 50%, supports AVX2 vector instructions, and CPU and GPU clock
frequencies are improved. In addition to the dual-core and quad-core product lines, a new octa-core product line has appeared.
Additionally, DDR5 has been added to the DRAM interface.

Since the new SoC’s performance and features had improved significantly, we were excited to begin the design of the
new H4 series.


DDR5 vs DDR4

The Intel Alder Lake-N platform offers a choice between DDR4 and DDR5 when designing hardware. Since we chose DDR5 for our ODROID-H4 design, DDR4 memory modules cannot be used.

The price of DDR5 has continued to drop for nearly two years since it was launched on the market, but we don’t know when a price crossover event will occur where the unit price of DDR5 will be lower than that of DDR4. Based on the currently most popular 16GB RAM capacity, the price of SO-DIMM DDR5 is still about 15~20% higher than DDR4.

However, with this price difference, we judged it to be worth the investment as more than 30% performance improvement was observed in terms of significantly higher large amount data processing ability, much faster GPU 3D/2D rendering, and faster encoding/decoding of high-definition videos. Additionally, a high memory bandwidth is very helpful when outputting multiple 4K monitors

Thanks to the high-speed DDR5, we easily decided to add another DisplayPort for additional video output.


Two SATA ports vs. Four SATA ports

The performance improvement of Intel’s new SoC was satisfactory, but the flexibility in setting up the high-speed interface was very low. Even though SATA storage devices are not as popular as they used to be, if possible, we wanted to maintain at least two SATA
ports like the existing H2 and H3 series.

Configuring some PCIe buses as SATA ports requires giving up USB 3.0 ports or reducing the number of lanes on the M.2 NVMe
PCIe bus by half. Unable to find a suitable compromise, we ended up having no choice but to add an external PCIe-to-SATA
bridge chipset. There was a burden of rising material costs and increasing PCB area. As we were adding a chipset, we boldly
chose 4 SATA ports instead of 2 SATA ports. Due to the added chipsets and a few connectors, the PCB area inevitably increased
(+10mm on each side), and unfortunately, form factor compatibility with the existing H2 and H3 series had no choice but to be given up.

Note that, because it is a SATA chipset that uses only one PCIe 3.0 lane, the total transfer speed of the four SATA ports is limited to
about 8 GT/s (0.985 GiB/s). Bandwidth is not saturated when using 4 SATA HDDs, but it can be saturated when using multiple
SATA SSDs. Additionally, power consumption inevitably increased slightly due to the additional chipset.


Affordable Entry Model vs. Performance Flagship Model

The performanceLooking at the sales history of the existing H2 and H3 series, we could estimate that approximately 30-40%
of users were using SATA storage devices. We also saw many users using only one of the two Ethernet ports.

And there was a lot of feedback from B2B corporate customers that there was a cost burden when using x86-based SBCs in large
quantities instead of ARM-based SBCs.

Also, instead of spending a lot of time designing and getting certification for a new PCB, we decided to release a cost-effective
product without mounting several components on the common ODROID-H4 PCB instead of designing a completely different
In order to reduce the price as much as possible, we have also removed the Dual-BIOS function, which will be used less frequently.

On the other hand, the highest-end model, the ODROID-H4 Ultra, is equipped with the expensive Intel Core i3 Processor, allowing us to enjoy the comfortable computing performance of an Octa-core processor. Although PassMark is a somewhat synthetic
benchmarking score, it showed during our tests that the multi-threading performance is almost similar to the i5-10500T,
a 10th generation Intel desktop CPU released a few years ago.

Within the H4 series, the multi-threading computing performance of the H4 Ultra model is about twice that of the H4 or H4+.


Intel I226-V vs. Realtek RTL8125B

In fact, when comparing only network traffic performance or power consumption, no noticeable difference was found. These are all performance levels that saturate 2.5Gbps Ethernet infrastructure.

However, we received a lot of feedback from customers that some OSes specialized for VT-x virtualization technology only officially support Intel NIC chipsets, so we made the change despite the burden on costs.


H3 and H3+

With the H3 and H3+ models launching in the second half of 2022, we are still shipping to many customers.
We will do our best to ensure that we can purchase key components and continue to produce and supply them
as long as there is demand from customers.

Note that compared to the new H4 series, H3 and H3+ still have a larger maximum possible DRAM capacity,
support a dual-channel DRAM interface, and have the advantage of a smaller form factor



For the distinction between ODROID-H4, H4+, and H4-Ultra refer to the figure below

Have written H4, H4PLUS, and H4-ULTRA like in the red circle below pictures where on the bottom PCB inside SODIMM DDR5 Socket.





Kapcsolódó termékek
HARDKERNEL ODROID-H4/H4+/H4Ultra Case Type 1
Type 1 készülékház ODROID-H4-hez. H4+-hoz és H4 Ultrahoz a perforált takaró eltávolítása szükséges.Fekete színben, a szereléshez szükséges…
Ár: 5.060 Ft + Áfa
(Br. 6.426 Ft)
HARDKERNEL ODROID-H4/H4+/H4Ultra Case Type 2
Type 2 készülékház ODROID-H4-hez. H4+-hoz és H4 Ultrahoz a perforált takaró eltávolítása szükséges.Fekete színben, a szereléshez szükséges…
Ár: 6.072 Ft + Áfa
(Br. 7.711 Ft)
HARDKERNEL ODROID-H4/H4+/H4Ultra Case Type 4
Type 4 készülékház ODROID-H4, H4+, H4 Ultrahoz. Net Card és 4 x 3.5” SATA drive-hoz elegendő hellyel.Fekete színben, ventilátorral és a szereléshez szükséges…
Ár: 12.650 Ft + Áfa
(Br. 16.066 Ft)